ASP源码.NET源码PHP源码JSP源码JAVA源码DELPHI源码PB源码VC源码VB源码Android源码
当前位置:首页 >> 网络编程 >> Python教程 >> python 数据处理学习pandas之DataFrame

python 数据处理学习pandas之DataFrame

来源:网络整理     时间:2015-10-25     关键词:索引,正则表达式

本篇文章主要介绍了"python 数据处理学习pandas之DataFrame",主要涉及到索引,正则表达式方面的内容,对于Python教程感兴趣的同学可以参考一下: 请原谅没有一次写完,本文是自己学习过程中的记录,完善pandas的学习知识,对于现有网上资料的缺少和利用python进行数据分析这本书部分知识的过时,只好以记录...

请原谅没有一次写完,本文是自己学习过程中的记录,完善pandas的学习知识,对于现有网上资料的缺少和利用python进行数据分析这本书部分知识的过时,只好以记录的形势来写这篇文章.最如果后续工作定下来有时间一定完善pandas库的学习,请见谅!                     by LQJ 2015-10-25

前言:

首先推荐一个比较好的Python pandas DataFrame学习网址

    网址: http://www.cnblogs.com/chaosimple/p/4153083.html

说明:
首先百度Python pandas DataFrame,下面列出DataFrame该数据结构的部分使用方法,并对其进行说明, DataFrame和Series作为padans两个主要的数据结构.
     如果你经常使用SQL数据库或者做过数据分析等相关工作,可以更快的上手python的pandas库,其pandas库的使用方法跟SQL语句的一些语法类似,只不过语言 变了而已.
正文:
import pandas as pd 引用pandas时使用pd名称就可
使用DataFrame查看数据(类似SQL中的select):
from pandas import DataFrame #从pandas库中引用DataFrame
df_obj = DataFrame() #创建DataFrame对象
df_obj.dtypes #查看各行的数据格式
df_obj.head() #查看前几行的数据,默认前5行
df_obj.tail() #查看后几行的数据,默认后5行
df_obj.index #查看索引
df_obj.columns #查看列名
df_obj.values #查看数据值
df_obj.describe #描述性统计
df_obj.T #转置
df_obj.sort(columns = ‘’)#按列名进行排序
df_obj.sort_index(by=[‘’,’’])#多列排序,使用时报该函数已过时,请用sort_values
df_obj.sort_values(by=['',''])同上
 
使用DataFrame选择数据(类似SQL中的LIMIT):
df_obj[‘客户名称’] #显示列名下的数据
df_obj[1:3] #获取1-3行的数据,该操作叫切片操作,获取行数据
df_obj.loc[:0,['用户号码','产品名称']] #获取选择区域内的数据,逗号前是行范围,逗号后是列范围,注loc通过标签选择数据,iloc通过位置选择数据
df_obj['套餐'].drop_duplicates() #剔除重复行数据
使用DataFrame重置数据:
df_obj.at[df_obj.index,'支局_维护线']='自有厅' #通过标签设置新的值,如果使用iat则是通过位置设置新的值
使用DataFrame筛选数据(类似SQL中的WHERE):
alist = ['023-18996609823']
df_obj['用户号码'].isin(alist) #将要过滤的数据放入字典中,使用isin对数据进行筛选,返回行索引以及每行筛选的结果,若匹配则返回ture
df_obj[df_obj['用户号码'].isin(alist)] #获取匹配结果为ture的行
使用DataFrame模糊筛选数据(类似SQL中的LIKE):
df_obj[df_obj['套餐'].str.contains(r'.*?语音CDMA.*')] #使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次
使用DataFrame进行数据转换(后期补充说明)
df_obj['支局_维护线'] = df_obj['支局_维护线'].str.replace('巫溪分公司(.{2,})支局','\\1')#可以使用正则表达式
df_obj['支局_维护线'].drop_duplicates() #返回一个移除重复行的数据
可以设置take_last=ture 保留最后一个,或保留开始一个.补充说明:注意take_last=ture已过时,请使用keep='last'
使用pandas中读取文本数据:
read_csv('D:\LQJ.csv',sep=';',nrows=2) #首先输入csv文本地址,然后分割符选择等等
使用pandas聚合数据(类似SQL中的GROUP BY 或HAVING):
data_obj['用户标识'].groupby(data_obj['支局_维护线'])
data_obj.groupby('支局_维护线')['用户标识'] #上面的简单写法
adsl_obj.groupby('支局_维护线')['用户标识'].agg([('ADSL','count')])
#按支局进行汇总对用户标识进行计数,并将计数列的列名命名为ADSL
使用pandas合并数据集(类似SQL中的JOIN):
merge(mxj_obj2, mxj_obj1 ,on='用户标识',how='inner')# mxj_obj1和mxj_obj2将用户标识当成重叠列的键合并两个数据集,inner表示取两个数据集的交集.

以上就介绍了python 数据处理学习pandas之DataFrame,包括了索引,正则表达式方面的内容,希望对Python教程有兴趣的朋友有所帮助。

本文网址链接:http://www.codes51.com/article/detail_200574.html

相关图片

相关文章